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ABSTRACT  
The aim of this paper is the determination of six orbital elements if two positions (1 and 2) of a solar system body are known.
The task was solved using the ratio of the elliptical sector to the area of the corresponding triangle. This relationship was
labelled as η and derived by K. F. Gauss (1809), see sections 1 and 2. This paper presents four easy methods that supply the
ratio, see section 3.  These methods simplify this task by removing long and very complicated derivations and by clarifying
the theory and calculations. The methods are not used in the case of more than two observations. 
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2. THE BASIC IDEAS OF THE DETERMINATION 
OF THE ORBITAL ELEMENTS USING THE 
RATIO η 
Gauss's original method consists of the

derivation of the equation 
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which is the sought Gauss's ratio of sector to triangle
(Gauss, 1809). Here c denotes the double of the
sectorial velocity and r1, r2, v1, v2 (see Fig. 1), are the
geocentric radii and the true anomalies in the times t1
and t2, respectively. The sought ratio is also valid for
other bodies which are gravitationally attracted to
each other. Gauss was led to the equation by the task
of determining the orbit using two given geocentric
positions in both polar and rectangular coordinates.
Using η we get the parameter of the elliptical orbit
(the semi latus rectum of a conic) p immediately from

the equation 
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easily and successively we get the remaining orbital
elements; k is Gauss’s gravitational constant. The
derivation of the ratio η is very difficult and time
consuming. It leads to the equations 
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1. INTRODUCTION 
The presented paper is part of the sphere of

theoretical astronomy in which the orbital elements
are determined. The nature of the problem falls under
celestial mechanics. The theory has become
substantially easier as mutual gravitational attraction
and other disturbances were not used. We shall deal
with different applications of Kepler's laws, although
in an ambiguous form. The derived equations can be
used not only in the heliocentric system but also in
any of the planetocentric systems. We shall deal with
the determination of the elements of elliptical orbit.
We shall not study parabolic and hyperbolic orbits.
The fundamental plane is not only ecliptic but more
often the plane of the equator of the central body. The
task that shall be solved in the following text is: 

Determine six orbital elements of a solar system
body if its two centric positions 1 and 2 in the given
coordinate system are known! 

The first solution of the task was done by Gauss
using the ratio 

η = (the area of the elliptical sector)/(the area of
the corresponding triangle), 

 see Gauss (1809). The solution of the task has
been modified by many authors. For the modifications
as well as the history of the determination of the
orbital elements in detail see M. F. Subbotin (1968),
particularly G. Stracke (1929) and recently D. L.
Boulet (1991). A bibliography of the works on the
classical method of the determination of the orbits of
planets and comets published before 1900 is given in
Radau (1899). The bibliography between 1900 and
1928 is shown in Stracke (1929) and in Subbotin
(1968). 
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Fig. 1 The orbit of a solar system body and its two centric positions at epochs t1, t2. 
 

The methods mentioned in this section are the
oldest ones. They were proposed when the branch of
orbital element determination was being formulated.
The methods are complicated from the theoretical
point of view, e.g. their derivation. Nevertheless they
need iterations either of approximation or inter-
polation. 

 
3. OTHER METHODS WITHOUT USING THE 

RATIO η   
The task is the same as is described in the

Introduction. We shall show the recent methods and
untraditional methods that use new theoretical
relations of the problem of two bodies but also use
modern computers. This is the author’s primary
intention. In the following considerations we
established that the origin of the coordinate system is
identical to the focus of the elliptical orbit of the
studied body; the fundamental plane x, y is identical to
the equatorial plane of the central body (for example
the Earth in the case of artificial satellites) and the
fundamental direction is the direction to the vernal
point. The z axis complements the system to the right
hand and orthogonal system. The two centric positions
used, 1 and 2, are defined by the coordinates xi ,  yi , zi
at the times ti for i=1, 2, see Fig. 1. The Gaussian
gravitational constant 21/)(GMk = .  

The cyclic methods are shown in sections 3.2.1
and 3.2.2, where no modifications of the equations of
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are the quantities which we get from the given
values. The task involves successive approximations,
that is to say the solution is not direct. The initial x is
derived from the first Eq. (2) using η = 1. 

The direct solution of the ratio η was done later
by P.A. Hansen using some simplifications. First of
all, he supposes x to be a very small value and uses
absolute and linear terms only. In the following
arrangement he omits quantities of the second and
higher orders and gets what is called Hansen’s
recurrent equation, or Hansen’s chain fraction; for
both see Stracke (1929), page 27. The solution of the
ratio η has been simplified but once again by using
greatly simplified successive approximations.  

The method proposed by Lambert led to
Lambert’s theorem (Lambert, 1902 and Stracke,
1929), which also requires the use of successive
approximations or iterations and is therefore an
indirect method. A special case of Lambert’s theorem
is Euler’s theorem, see Subbotin (1968) page 160.
From Lambert’s theorem we arrive at Gauss's ratio η. 
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and we can use two different ways to get the
semi major axis 
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and the eccentric and mean anomalies Ei and Mi
with the help of                        
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The value L in the Eq. (4) is derived exactly. We
can also express the value L in another way 
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This depends  on  the ω  chosen.  Comparing
Eqs. (4) and (9) we get  
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If ω is exact then ∆i = 0 and this is the key to the
next successive iterations of the Eqs. (5) - (10) and in
this way also the improvement of the elements a, e
and M0. This way is valid for the first three methods in
section 3.2. The calculation is repeated until ∆i, see
Eq. (10), is given more precisely. 

The fourth method, 3.2.4, is similar but the
successively improved values are the components of
the velocity at point 1, see Fig. 1.  

The input values of the illustration example are
as follows: 

x1 = 10 000 000.23 m, 
y1 = 39 999 999.987 m, 
z1 = 5 000 000.006 m, 
x2 = 4 316 743.858 616 m, 
y2 = 42 181 800.563 998 m, 
z2 = -5 183 743.556 899 m, 

t1 = 0 h, t2 = 1 h, k2 = GM = 3.986 004 415 ×1014

m3/s2 

and to check we also show the correct values of
the results for time  to = t1 = 0 h: 

Ω =  173°. 290 163 212 887 6, 
a = 25 015 181.040 748 56, 
Ι = 6°. 970 729 214 976 , 
e = 0.707 977 170 849 52, 
ω = 91°.552 886 987 917 7, 
M0 = 144°.224 991 298 787 8.   
 

3.2. NEW PROPOSED METHODS 
3.2.1. METHOD OF THE SUCCESSIVELY IMPROVING 

ARGUMENT Ω OF THE PERICENTER  
1. We determine the interval ∆ω (in the range  0-

180°) and calculate ∆j (the index i in the Eq. (10)
has been changed to the index j) with the chosen
step kω of the element ω. The index j then
corresponds to the value that has been calculated
in the steps kω. 

the problem of two bodies are applied and the one
determined element is specified gradually.  

The solution using derivation by a selected
element will be shown in section 3.2.3. This is an
older method which complements the two methods
described above and is here presented in a shorter
form. 

In section 3.2.4 the improvements of the velocity
components at point 1 are specified. The orbital task
with the two known positions 1 and 2 will be so
modified to the osculating method with the known
position and velocity at one position 1 only. The
solution is then easier. None of the four cases use the
ratio η, Lambert’s theorem, or any other
modifications.  

 
3.1. DESCRIPTION OF THE CALCULATION 

COMMON TO ALL OF THE FOLLOWING CASES
The lengths of the radius vectors r1, r2 and the

difference of the true anomalies 12 vv − are obtained
directly from the given data, see Fig. 1. The right
ascension of the ascending node Ω, the inclination of
the orbital plane I, and the arguments of declination u1
and u2 from the equations                          
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where the relation tg αi = yi / xi , sin δi = zi /ri and ri =
(xi

2 + yi
2 + zi

2 )1/2      for i = 1 and 2 apply for right
ascension, declination, respectively. We shall use the
relation 
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We can also derive the length of the chord 1-2,
see Fig. 1. The relations shown above give the final
values and the following calculations have no
influence on them. Thus we know two orbital
elements, Ω and I, which define the orientation of the
orbital plane in the reference system used. We also
have to determine the four remaining elements.
Therefore we shall choose the approximate value of
the argument ω of the pericentre, which orientates the
orbital ellipse in the orbital plane with respect to the
ascending node, see Fig. 1. We shall then gradually
elaborate upon it. After obtaining the required
precision we calculate the remaining elements. 

The true anomalies are determined using 
  

ω−= ii uv                                                        (5)
 

where i = 1 and 2 for the times t1 and t2. The
eccentricity is derived from the true anomalies 
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Table 1 Specifying the argument ω of the pericenter using the reduction of its interval ∆ω. 
 

ω [°] ∆j, Eq. (10) [m3/2] 

∆ω from 91° to 92° with the step  0.01° 

    91.55000000000028   -15773185.27116394 

91.56000000000029 38794322.81787109 

∆ω from 91.55° to 91.56° with the step 0.0001° 

91.55280000000009                                                -475029.3886260986 

    91.55290000000009   71055.99824523926 

∆ω from 91.5528° to 91.5529° with the step 0.000001° 

91.55288699999979                                            -5394.806854248047 

        91.55288699999979  65.97738647460937 
∆ω from 91.552886° to 91.552887° with the step 0.00000001° 

91.55288697999939                                                   -43.24050903320312 

91.55288698999938  11.36734008789062 

∆ω from 91.55288698° to 91.55288699° with the step 10-10° 

91.55288698790014  -.0962371826171875 

91.55288698800014                                               .4498291015625 
 

function ∆=∆(ω) needs to be known at least
approximately. The angular coefficient (slope) of the
chord VN AA ,  is  
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and the corresponding part on the axis ω is 
 

chVVP /∆−= ωω .                                       (12)
 

And again, the ∆P=∆P(ωP) is calculated using the
procedure described in section 3.2.1. The point AP
takes on the role of point AN, see Fig. 2, so that in Eq.
(11) ∆N → ∆P and ωN → ωP. We get the new value ch
of the angular coefficient and the new value ωP  from
Eqs (11) and (12). The method continues successively
until the point AP is close to the axis ω within the
required range of accuracy or is even identical to it.
The procedure is similar to the Newton’s iteration, but
it is not necessary to derive and calculate complicated
derivatives. The next lines in the Tab. 2 show ωP  and
∆P obtained from each iteration. The resulting value
ωP  = 91.552 886 988° was taken from the last line of
Tab. 2 taking into account the desired accuracy 10-6.    

2. As the correct value is valid for  ∆j =0, we take
the two values closest to zero out of the table, one
positive and the second negative. 

3. These two values define the new reduced interval
∆ω which is used to form a new table with the
new reduced step kω/100, etc.  
The tabulation is reiterated until the required

accuracy is achieved. The accuracy is checked using
the ∆j closest to zero. The first and second equations
of Eq. (3) have been used to determine Ω and I. The
other values are then improved successively using
Eqs. (4) - (10). 

The resulting value ω = 91.o552 886 988 with
the accuracy (absolut) 10-11. The number of significant
digits is too high to be of use. It is used only to verify
the method. The accuracy of the other elements is also
suitable, see the end of section 3.1. 

 
3.2.2. METHOD USING CHORDS. 

The Eqs. (3) and (4) are again used to calculate
the right ascension of the ascending node Ω, the orbit
inclination I, the declination arguments u1,  u2 and the
relation of L. Now, see Fig. 2 and the first two lines in
Tab. 2; the boundary ωN and ωV has been chosen as
the points AN and AV  on both sides of the axis ω. The
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Fig. 2 The dependence of the difference ∆i = L − Pi on the argument of
pericenter ω. 

Table 2 Specifying the argument of perifocus ω  using the chord method.            

limits of  ω [°] ∆j, Eq. (10) [m3/2] 
91.55000000000028 -15773185.27116394 
91.56000000000029  38794322.81787109 

 
improving of   ωP [°] 

 
∆Pj =  ∆i, Eq. (10) [m3/2] 

91.55000000000028 -15773185.27116394 
91.5528905819278        19626.09710693359 
91.5528869834437            -24.43177795410156 
91.55288698792332               0.0304412841796875 
 

the resulting elements: 
 

Ω [°] ω [°] 
   Ι  [°]: 

          173.2901632128876      91.55288698792332       6.970729214976468 
a [m] e Mo [°]: 

25015181.0406991                 0.7079771708528388                  144.2249912987904 
 

in the time [h] 0.  
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the osculating elements. Let us repeat the task before
presenting the method. We have the centric
coordinates x1,   y1,   z1 and   x2,   y2,   z2  valid for the
moments t1 and t2  and the geocentric gravity constant

21/)(GMk = . 

First approximation 
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Here the upper index 1. means the first
approximation. The values of ri and 12 vv −  are final.

Second and further approximations: 
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The resulting ωP corresponds to the correct value
and greatly exceeds the desired accuracy. Even the
remaining Kepler’s elements correspond to the correct
values.  

 
3.2.3.  METHOD USING DERIVATIONS 

First we again derive the right ascension Ω of the
ascending node, the inclination I of the orbit, and both
arguments of declination  u1 and u2 from Eqs (3).
Then we prepare the approximation in a similar
manner to that used in the previous section. We shall
use L = B(ω), see also Eq. (4), where the left side of
the equation is known and is expressible using the
input values. The right side contains the true anomaly
ω, and numerical eccentricity e, see Eqs. (5) and (6).
We introduce ω = ω0 + ∆ω and the Eq. (4) is
expanded to the Taylor series using the linear term
only 
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From the Eq. (13) we get the improving term ∆ω
and then the improved ω. The derivation of B(ω)
exists as well as the convergency. The calculation is
repeated starting from Eq.(5) and ending with Eq. (13)
till  the desired  accuracy is achieved. For more about
the method, including the required derivations and
example, see Kabeláč (1967). 

 
3.2.4. METHOD USING THE IMPROVEMENT OF THE 

VELOCITY COMPONENTS. 
We start from the highly important equations

mentioned, for example, in Subbotin (1968). They are
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Here the relations with index 1 correspond with
the time t1 and the relations with index 2 with the time
t2  for which the coordinates x2, y2, z2 are calculated,
see Boulet (1991), Kabeláč (1989), Subbotin (1968).
Note that the relations (14) and (15) are final (closed)
and are valid for any time interval 12 tt − . This means
that the relations are not a development retaining only
the first two terms. 

We need to modify the Eqs. (14) to the form 
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for the calculation of the velocity components at point
1, if the coordinates of points 1 and 2 are known. So
the task then becomes the easier task of determining



CONTRIBUTION TO THE THEORY OF THE DETERMINATION OF THE ORBITAL … 
 

 

67

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3 Improving the velocity components [m/s] after Eq. (16) 
 

Approx.                              
1xD  1yD  1zD  

1                  -1541.1187587180   779.6068826596   -72.6505679070 
2                -1498.6425154536   1007.7789911214   -100.9639845775 
3                   -1500.0469219373   999.7315323979   -99.9667302104 
4                -1499.9983727776   1000.0092781402   -100.0011500386 
5                  -1500.0000495137   999.9996851269   -99.9999612193 
6                     -1499.9999916026   1000.0000164498 -100.0000022787 
7                -1499.9999936027   1000.0000050067   -100.0000008606 
8                -1499.9999935336   1000.0000054018   -100.0000009095 
Final                     -1499.99999341         1000.00000534            -100.0000086       
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And finally the velocity components 
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The last relations for the second approximation
are repeated to reach the required accuracy. The upper
index 2. changes for 3. and so on. The numerical values
of the velocity components after each approximation
are shown in Tab. 3. The search accuracy of the
velocity components is 10-6, as proved by the results. 

 
4. CONCLUSION 

We intended to show several simple ways of
solving the task of determining the orbital elements if
two centric positions of the body are known without
using the ratio η triangle to sector. These simplified
methods fully replace the ratio η that was introduced
by K. F. Gauss 200 years ago and meant the solution
to one of the basic orbital tasks. In subsequent years
the ratio was used even using later modifications.  The
4 methods presented here fully replace the ratio, being
even simpler and consequently more understandable
than Gauss’s original derivation. The last method,
presented in section 3.2.4, is based on relations which
are not familiar. 

 


